
HEC FSIO Workshop
HECURA Research Program

August 7, 2008

Walt Ligon
Clemson University



Clemson HEC Filesystem Research

● Two teams
– Research team

● ECE Dept
● HECURA
● Simulation, metadata, semantics

– Development team
● CCIT
● ACS
● Server-to-server, caching, security



08/05/08 3

Project Objectives

● Develop an extensible parallel file system 
simulation tool

● Study
– Server-to-server communication
– Run-time configurable semantics/caching

● Address
– Scalable metadata
– Scalable small and unaligned access



08/05/08 4

Program Areas Addressed

●Scalable metadata operations
●Scalable small and unaligned operations
●I/O middleware
●Active caching
●Server to server communication
●Simulation of I/O, file, and storage systems



08/05/08 5

Progress To Date

● Development of HECIOS simulator done
● Tuning and validation
● Scalable metadata

– Server-to-server communication
– Collective communication

● Client caching
– Shared between threads
– Data layout aware



08/05/08 6

HECIOS Architecture

Trace Processor

Cache

BMI/INET
OS Cache

FsSim
Disk Model

PFS

Request
Scheduler

Request
Processor

Client

Server



08/05/08 7

Traces

● Developed 2 trace formats
– SHTF (the serial HECIOS trace format)
– PHTF (the parallel HECIOS trace format).
– Both are constructed from ltrace traces

● Successfully used traces from the LANL-trace 
repository

● Used the LANL Trace library to trace BT-IO and 
Flash-IO benchmarks



08/05/08 8

Issues in Trace Library
● Uses ltrace for tracing

– Modified ltrace regular expressions to capture the fortran 
MPI calls in BT-IO

● LTrace cannot output more than 5 parameters
– Created a custom ltrace.conf file to support big MPI calls

● Ltrace won't dereference pointers
– Wrote a patch for mpich2 that will output those parameters 

in printf calls
– Fortran is pass by reference, every call just gives address
– Ideally, might need to fork ltrace and add this ability



08/05/08 9

Tuning and Validation

● Tuning
– Instrumented PVFS

● Server components (request process, trove, disk time, etc.)
● Client components (request setup, network overhead, etc.)

● Validation
– Simple applications – single server (cp, rm, etc.)
– Phil Carns' prototype results as a comparison

● Server-to-server/collective communications



08/05/08 10

Mid

Client

App

Network

Mid

Client

App

Serv

Mid

Client

App

Serv Serv

Mid

Client

App

Network

Mid

Client

App

Serv

Mid

Client

App

Serv Serv

Mid

Client

App

Network

Mid

Client

App

Serv

Mid

Client

App

Serv Serv

Mid

Client

App

Network

Mid

Client

App

Serv

Mid

Client

App

Serv Serv

Traditional Metadata 
Operation

Scalable Metadata 
Operation

Scalable Metadata
Server-to-Server Communication



08/05/08 11

PVFS/TCP Create Time



08/05/08 12

PVFS/GM Create Time



08/05/08 13

HECIOS Create Times



08/05/08 14

Mid

Cache

Client

App

Network

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Network

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Network

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Network

Mid

Cache

Client

App

Serv

Mid

Cache

Client

App

Serv

Cold 
Read

Write

Synchronization 
Event

Write-
back

Middleware Managed Cache
Weakened Consistency



08/05/08 15

Middleware Cache Experiments

● Multi-core shared cache
– cores/cache
– concurrent access issues
– size/associativity

● File view based cache
– FS access efficiency
– coherency effects
– combining views



08/05/08 16

Development Activities

● Server-to-server implementation
– Metadata operations
– Redundancy

● Capability-based security
– External authentication (pam, kerberos, federated)
– “Unix-level” security 

● Middleware caching



08/05/08 17

New Directions

● The River Model
– Environment support for building applications
– Component based
– Automated memory and IO management
– Based on DeBardeleben's Coven
– Modified for script-based applications
– Brings HEC results back to GP computing


